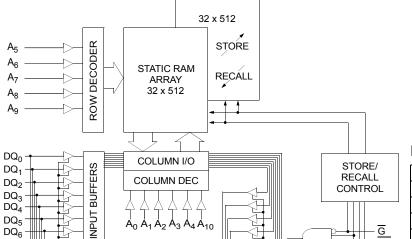


FTN16C8 2K x 8 nvSRAM

Nonvolatile Static RAM

FEATURES

- · 25ns, 35ns and 45ns Access Times
- STORE to Nonvolatile Elements Initiated by Hardware
- RECALL to SRAM Initiated by Hardware or Power Restore
- Automatic STORE Timing


BLOCK DIAGRAM

- 10mA Typical I_{cc} at 200ns Cycle Time
- Unlimited READ, WRITE and RECALL Cycles
- 1,000,000 STORE Cycles to Nonvolatile Elements
- 100-Year Data Retention over Full Industrial Temperature Range
- Commercial and Industrial Temperatures
- 28-Pin 300 mil PDIP, 300 mil SOIC and 350 mil SOIC Packages

DESCRIPTION

The Force FTN16C8 is a fast static RAM with a non-volatile element incorporated in each static memory cell. The SRAM can be read and written an unlimited number of times, while independent nonvolatile data resides in the Nonvolatile Elements. Data may easily be transferred from the SRAM to the Nonvolatile Elements (the *STORE* operation), or from the Nonvolatile Elements to the SRAM (the *RECALL* operation), using the NE pin. Transfers from the Nonvolatile Elements to the SRAM (the *RECALL* operation) also take place automatically on restoration of power. The FTN16C8 combines the high performance and ease of use of a fast SRAM with nonvolatile data integrity.

The FTN16C8 features industry-standard pinout for nonvolatile RAMs.

PIN CONFIGURATIONS

NE _	1	28	□ V _{CC}		
NC \square	2	27	⊒ ₩		
A ₇	3	26	□ NC		
A ₆ \square	4	25	□ A ₈		
A ₅	5	24	□ A ₉		
A ₄	6	23	□ NC		
A ₃	7	22	⊐Ġ		
A ₂ \Box	8	21	□ A ₁₀		
A ₁ \Box	9	20	□Ē		
A ₀ \square	10	19	\square DQ ₇		
$DQ_0 \square$	11	18	\square DQ ₆		
$DQ_1 \square$	12	17	\square DQ ₅	28 - 300	PDIP
$DQ_2 \square$	13	16	\square DQ ₄	28 - 300	SOIC
V _{SS} □	14	15	\square DQ ₃	28 - 350	
				_0 000	00.0

PIN NAMES

NE

Ē

A ₀ - A ₁₀	Address Inputs
W	Write Enable
DQ ₀ - DQ ₇	Data In/Out
Ē	Chip Enable
G	Output Enable
NE	Nonvolatile Enable
V _{CC}	Power (+ 5V)
V _{SS}	Ground

DQ₇

ABSOLUTE MAXIMUM RATINGS^a

Voltage on Input Relative to Ground	0.5V to 7.0V
Voltage on Input Relative to V _{SS}	$-0.6V$ to $(V_{CC} + 0.5V)$
Voltage on DQ ₀₋₇	$-0.5V$ to $(V_{CC} + 0.5V)$
Temperature under Bias	55°C to 125°C
Storage Temperature	65°C to 150°C
Power Dissipation	1W
DC Output Current (1 output at a time, 1s du	ration)15mA

Note a: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC CHARACTERISTICS

$$(V_{CC} = 5.0V \pm 10\%)$$

SYMBOL	PARAMETER	сомм	ERCIAL	INDU	STRIAL	UNITS	NOTES
STWBUL	PARAMETER	MIN	MAX	MIN	MAX	UNITS	NOTES
I _{CC1} ^b	Average V _{CC} Current		85 75 65		90 75 65	mA mA mA	t _{AVAV} = 25ns t _{AVAV} = 35ns t _{AVAV} = 45ns
I _{CC2} c	Average V _{CC} Current during STORE		3		3	mA	All Inputs Don't Care, V _{CC} = max
ICC3 b	Average V _{CC} Current at t _{AVAV} = 200ns 5V, 25°C, Typical		10		10	mA	$\overline{W} \ge (V_{CC} - 0.2V)$ All Others Cycling, CMOS Levels
I _{SB1} ^d	Average V _{CC} Current (Standby, Cycling TTL Input Levels)		25 21 18		26 22 19	mA mA mA	t_{AVAV} = 25ns, \overline{E} \geq V_{IH} t_{AVAV} = 35ns, \overline{E} \geq V_{IH} t_{AVAV} = 45ns, \overline{E} \geq V_{IH}
I _{SB2} ^d	V _{CC} Standby Current (Standby, Stable CMOS Input Levels)		750		750	μА	$\overline{E} \ge (V_{CC} - 0.2V)$ All Others $V_{IN} \le 0.2V$ or $\ge (V_{CC} - 0.2V)$
I _{ILK}	Input Leakage Current		±1		±1	μΑ	V _{CC} = max V _{IN} = V _{SS} to V _{CC}
I _{OLK}	Off-State Output Leakage Current		±5		±5	μА	V_{CC} = max V_{IN} = V_{SS} to V_{CC} , \overline{E} or $\overline{G} \ge V_{IH}$
V _{IH}	Input Logic "1" Voltage	2.2	V _{CC} + .5	2.2	V _{CC} + .5	V	All Inputs
V _{IL}	Input Logic "0" Voltage	V _{SS} 5	0.8	V _{SS} 5	0.8	٧	All Inputs
V _{OH}	Output Logic "1" Voltage	2.4		2.4		V	I _{OUT} =-4mA
V _{OL}	Output Logic "0" Voltage		0.4		0.4	V	I _{OUT} = 8mA
T _A	Operating Temperature	0	70	-40	85	°C	

Note b: I_{CC_1} and I_{CC_3} are dependent on output loading and cycle rate. The specified values are obtained with outputs unloaded. Note c: I_{CC_2} is the average current required for the duration of the *STORE* cycle (I_{STORE}). Note d: $E \ge V_{IH}$ will not produce standby current levels until any nonvolatile cycle in progress has timed out.

AC TEST CONDITIONS

Input Pulse Levels
Input Rise and Fall Times ≤ 5ns
Input and Output Timing Reference Levels 1.5V
Output Load

CAPACITANCE^e $(T_A = 25^{\circ}C, f = 1.0MHz)$

SYMBOL	PARAMETER	MAX	UNITS	CONDITIONS
C _{IN}	Input Capacitance	8	pF	$\Delta V = 0$ to 3V
C _{OUT}	Output Capacitance	7	pF	$\Delta V = 0$ to 3V

Note e: These parameters are guaranteed but not tested.

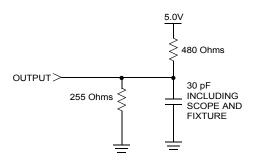
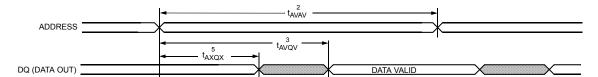
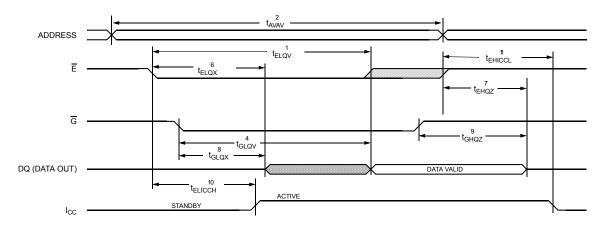


Figure 1: AC Output Loading


SRAM READ CYCLES #1 & #2

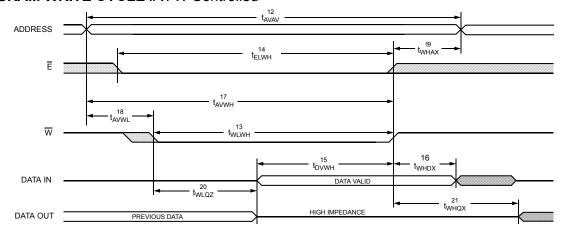
 $(V_{CC} = 5.0V \pm 10\%)$


	SYME	BOLS	DADAMETED	FTN16	C8-25	FTN16C8-35		FTN16C8-45		LINUTO
NO.	#1, #2	Alt.	PARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	UNITS
1	t _{ELQV}	t _{ACS}	Chip Enable Access Time		25		35		45	ns
2	t _{AVAV} f	t _{RC}	Read Cycle Time	25		35		45		ns
3	t _{AVQV} g	t _{AA}	Address Access Time		25		35		45	ns
4	t _{GLQV}	t _{OE}	Output Enable to Data Valid		10		15		20	ns
5	t _{AXQX} g	tон	Output Hold after Address Change	5		5		5		ns
6	t _{ELQX}	t_{LZ}	Chip Enable to Output Active	5		5		5		ns
7	t_{EHQZ}^h	t _{HZ}	Chip Disable to Output Inactive		10		13		15	ns
8	t _{GLQX}	t _{OLZ}	Output Enable to Output Active	0		0		0		ns
9	t _{GHQZ} h	t _{OHZ}	Output Disable to Output Inactive		10		13		15	ns
10	t _{ELICCH} e	t _{PA}	Chip Enable to Power Active			0		0		ns
11	t _{EHICCL} d, e	t _{PS}	Chip Disable to Power Standby		25		35		45	ns

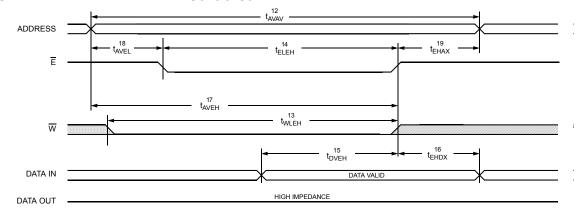
Note f: \overline{W} must be high during SRAM READ cycles and low during SRAM WRITE cycles. \overline{NE} must be high during entire cycle. Note g: I/O state assumes \overline{E} , $\overline{G} \le V_{IL}$, $\overline{W} \ge V_{IH}$, and $\overline{NE} \ge V_{IH}$, device is continuously selected. Note h: Measured \pm 200mV from steady state output voltage.

SRAM READ CYCLE #1: Address Controlled f, g

SRAM READ CYCLE #2: E Controlled


SRAM WRITE CYCLES #1 & #2

$(V_{CC} = 5.0V \pm 10\%)$	(\	/	=	5.	0V	\pm	10%
----------------------------	------------	----------	---	----	----	-------	-----


		SYMBOLS		DADAMETED	FTN160	C8-25	FTN16C8-35		FTN16C8-45		UNITS
NO.	#1	#2	Alt.	PARAMETER		MAX	MIN	MAX	MIN	MAX	UNIIS
12	t _{AVAV}	t _{AVAV}	t _{WC}	Write Cycle Time	25		35		45		ns
13	t _{WLWH}	t _{WLEH}	t _{WP}	Write Pulse Width	20		25		30		ns
14	t _{ELWH}	t _{ELEH}	t _{CW}	Chip Enable to End of Write	20		25		30		ns
15	t _{DVWH}	t _{DVEH}	t _{DW}	Data Set-up to End of Write	10		12		15		ns
16	t _{WHDX}	t _{EHDX}	t _{DH}	Data Hold after End of Write	0		0		0		ns
17	t _{AVWH}	t _{AVEH}	t _{AW}	Address Set-up to End of Write	20		25		30		ns
18	t _{AVWL}	t _{AVEL}	t _{AS}	Address Set-up to Start of Write	0		0		0		ns
19	t _{WHAX}	t _{EHAX}	t _{WR}	Address Hold after End of Write	0		0		0		ns
20	$t_{WLQZ}^{h,i}$		t _{WZ}	Write Enable to Output Disable		10		13		15	ns
21	t _{WHQX}		t _{OW}	Output Active after End of Write	5		5		5		ns

Note i: $\begin{array}{ll} \text{If \overline{W} is low when \overline{E} goes low, the outputs remain in the high-impedance state.} \\ \text{Note j:} & \overline{E} \text{ or \overline{W} must be $\geq V_{IH}$ during address transitions. } \\ \overline{\text{NE}} \geq V_{IH}. \end{array}$

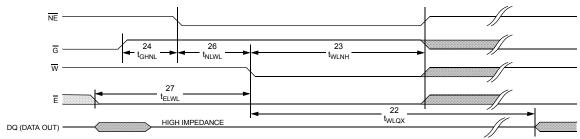
SRAM WRITE CYCLE #1: W Controlled

SRAM WRITE CYCLE #2: E Controlled

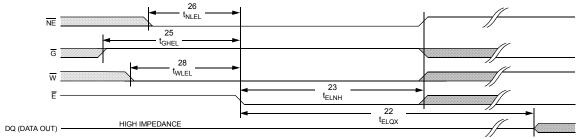
MODE SELECTION

Ē	w	G	NE	MODE	POWER
Н	Х	Х	Х	Not Selected	Standby
L	Н	L	Н	Read SRAM	Active
L	L	Х	Н	Write SRAM	Active
L	Н	L	L	Nonvolatile RECALL ^k	Active
L	L	Н	L	Nonvolatile STORE	I _{CC2}
L L	L H	L H	L X	No Operation	Active

Note k: An automatic RECALL takes place at power up, starting when V_{CC} exceeds 4.25V and taking t_{RESTORE}.


STORE CYCLES #1 & #2

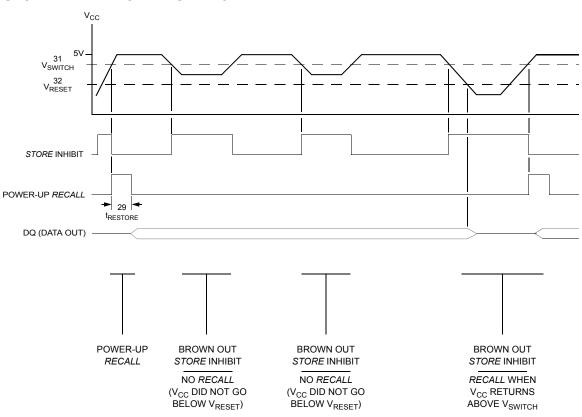
 $(V_{CC} = 5.0V \pm 10\%)$


NO		SYMBOLS		PARAMETER		MAY.	LINUTO
NO.	#1	#2	Alt.			MAX	UNITS
22	t _{WLQX} I	t _{ELQX}	t _{STORE}	STORE Cycle Time		10	ms
23	t _{WLNH} m	t _{ELNH}	t _{WC}	STORE Initiation Cycle Time	20		ns
24	t _{GHNL}			Output Disable Set-up to NE Fall	0		ns
25		t _{GHEL}		Output Disable Set-up to \overline{E} Fall	0		ns
26	t _{NLWL}	t _{NLEL}		NE Set-up	0		ns
27	t _{ELWL}			Chip Enable Set-up	0		ns
28		t _{WLEL}		Write Enable Set-up	0		ns

Note I: Measured with \overline{W} and \overline{NE} both returned high, and \overline{G} returned low. STORE cycles are inhibited below 4.0V. Note m: Once t_{WC} has been satisfied by \overline{NE} , \overline{G} , \overline{W} and \overline{E} , the STORE cycle is completed automatically. Any of \overline{NE} , \overline{G} , \overline{W} or \overline{E} may be used to terminate the STORE initiation cycle. Note n: If \overline{E} is low for any period of time in which \overline{W} is high while \overline{G} and \overline{NE} are low, then a RECALL cycle may be initiated.

STORE CYCLE #1: W Controlledn

STORE CYCLE #2: E Controlledⁿ


STORE INHIBIT/POWER-UP RECALL

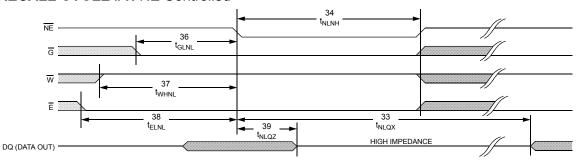
Vcc	=	5	0\/	+	10%	١
. v (:(:		Ο.	. U V		10/0	,

NO.	SYMBOLS	PARAMETER		FTN16C8		NOTES
	Standard	PARAMETER	MIN	MAX	UNITS	NOTES
29	t _{RESTORE}	Power-up RECALL Duration		550	μs	0
30	tstore	STORE Cycle Duration		10	ms	
31	V _{SWITCH}	Low Voltage Trigger Level	4.0	4.5	V	
32	V _{RESET}	Low Voltage Reset Level		3.6	V	

Note o: $t_{RESTORE}$ starts from the time V_{CC} rises above V_{SWITCH} .

STORE INHIBIT/POWER-UP RECALL

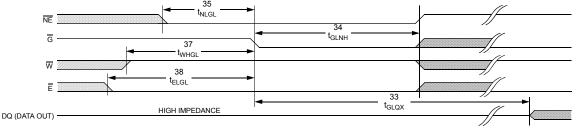
RECALL CYCLES #1, #2 & #3


NO.	SYMBOLS			DADAMETED	MIN	MAX	LINUTO
	#1	#2	#3	PARAMETER	IVIIN	WAX	UNITS
33	t _{NLQX} p	t _{ELQX}	t _{GLQX}	RECALL Cycle Time		20	μs
34	t _{NLNH} q	t _{ELNH}	t _{GLNH}	RECALL Initiation Cycle Time	20		ns
35		t _{NLEL}	t _{NLGL}	NE Set-up	0		ns
36	t_{GLNL}	t _{GLEL}		Output Enable Set-up	0		ns
37	t _{WHNL}	t _{WHEL}	t _{WHGL}	Write Enable Set-up	0		ns
38	t _{ELNL}	t _{GLEL}	t _{ELGL}	Chip Enable Set-up	0		ns
39	t _{NLQZ}			NE Fall to Outputs Inactive		20	ns
40	t _{RESTORE}			Power-up RECALL Duration		550	μs

Note p: Measured with \overline{W} and \overline{NE} both high, and \overline{G} and \overline{E} low.

Note q: Once t_{NLNH} has been satisfied by \overline{NE} , \overline{G} , \overline{W} and \overline{E} , the *RECALL* cycle is completed automatically. Any of \overline{NE} , \overline{G} or \overline{E} may be used to terminate the *RECALL* initiation cycle.

Note r: If W is low at any point in which both E and NE are low and G is high, then a STORE cycle will be initiated instead of a RECALL.


RECALL CYCLE #1: NE Controlledⁿ

RECALL CYCLE #2: \overline{E} Controlledⁿ

RECALL CYCLE #3: G Controlled^{n, r}

DEVICE OPERATION

The FTN16C8 has two modes of operation: SRAM mode and nonvolatile mode, determined by the state of the $\overline{\text{NE}}$ pin. When in SRAM mode, the memory operates as a standard fast static RAM. While in nonvolatile mode, data is transferred in parallel from SRAM to Nonvolatile Elements or from Nonvolatile Elements to SRAM.

NOISE CONSIDERATIONS

Note that the FTN16C8 is a high-speed memory and so must have a high-frequency bypass capacitor of approximately $0.1\mu\text{F}$ connected between V_{cc} and V_{SS} , using leads and traces that are as short as possible. As with all high-speed CMOS ICs, normal careful routing of power, ground and signals will help prevent noise problems.

SRAM READ

The FTN16C8 performs a READ cycle whenever E and \overline{G} are low and \overline{NE} and \overline{W} are high. The address specified on pins A_{0-10} determines which of the 2,048 data bytes will be accessed. When the READ is initiated by an address transition, the outputs will be valid after a delay of t_{AVQV} (READ cycle #1). If the READ is initiated by \overline{E} or \overline{G} , the outputs will be valid at t_{ELQV} or at t_{GLQV} , whichever is later (READ cycle #2). The data outputs will repeatedly respond to address changes within the t_{AVQV} access time without the need for transitions on any control input pins, and will remain valid until another address change or until \overline{E} or \overline{G} is brought high or \overline{W} or \overline{NE} is brought low.

SRAM WRITE

A WRITE cycle is performed whenever \overline{E} and \overline{W} are low and $N\overline{E}$ is high. The address inputs must be stable prior to entering the WRITE cycle and must remain stable until either \overline{E} or \overline{W} goes high at the end of the cycle. The data on pins DQ_{0-7} will be written into the memory if it is valid t_{DVWH} before the end of a \overline{W} controlled WRITE or t_{DVEH} before the end of an \overline{E} controlled WRITE.

It is recommended that G be kept high during the entire WRITE cycle to avoid data bus contention on the common I/O lines. If \overline{G} is left low, internal circuitry will turn off the output buffers t_{WLQZ} after \overline{W} goes low.

NONVOLATILE STORE

A STORE cycle is performed when $\overline{\text{NE}}$, $\overline{\text{E}}$ and $\overline{\text{W}}$ and low and $\overline{\text{G}}$ is high. While any sequence that achieves this state will initiate a STORE, only $\overline{\text{W}}$ initiation (STORE cycle #1) and $\overline{\text{E}}$ initiation (STORE cycle #2) are practical without risking an unintentional SRAM WRITE that would disturb SRAM data. During a STORE cycle, previous nonvolatile data is erased and the SRAM contents are then programmed into nonvolatile elements. Once a STORE cycle is initiated, further input and output are disabled and the DQ₀₋₇ pins are tri-stated until the cycle is complete.

If \overline{E} and \overline{G} are low and \overline{W} and \overline{NE} are high at the end of the cycle, a READ will be performed and the outputs will go active, signaling the end of the STORE.

NONVOLATILE RECALL

A *RECALL* cycle is performed when \overline{E} , \overline{G} and \overline{NE} are low and \overline{W} is high. Like the *STORE* cycle, *RECALL* is initiated when the last of the four clock signals goes to the *RECALL* state. Once initiated, the *RECALL* cycle will take t_{NLQX} to complete, during which all inputs are ignored. When the *RECALL* completes, any READ or WRITE state on the input pins will take effect.

Internally, *RECALL* is a two-step procedure. First, the SRAM data is cleared, and second, the nonvolatile information is transferred into the SRAM cells. The *RECALL* operation in no way alters the data in the nonvolatile cells. The nonvolatile data can be recalled an unlimited number of times.

As with the *STORE* cycle, a transition must occur on any one control pin to cause a *RECALL*, preventing inadvertent multi-triggering. On power up, once $V_{\rm CC}$ exceeds 4.25V, a *RECALL* cycle is automatically initiated. Due to this automatic *RECALL*, SRAM operation cannot commence until $t_{\rm RESTORE}$ after $V_{\rm CC}$ exceeds 4.25V.

POWER-UP RECALL

During power up, or after any low-power condition ($V_{\rm CC}$ < 3.0V), an internal *RECALL* request will be latched. When $V_{\rm CC}$ once again exceeds 4.25V, a *RECALL* cycle will automatically be initiated and will take $t_{\rm RESTORE}$ to complete.

If the FTN16C8 is in a WRITE state at the end of power-up *RECALL*, the SRAM data will be corrupted. To help avoid this situation, a 10K Ohm resistor should be connected either between \overline{W} and system V_{CG} or between \overline{E} and system V_{CG} .

HARDWARE PROTECT

The FTN16C8 offers two levels of protection to suppress inadvertent <u>STORE</u> cycles. If the control signals (\overline{E} , \overline{G} , \overline{W} and \overline{NE}) remain in the <u>STORE</u> condition at the end of a <u>STORE</u> cycle, a second <u>STORE</u> cycle will not be started. The <u>STORE</u> (or <u>RECALL</u>) will be initiated only after a transition on any one of these signals to the required state. In addition to multi-trigger protection, <u>STORE</u>s are inhibited when V_{CC} is below 4.0V, protecting against inadvertent <u>STORE</u>s.

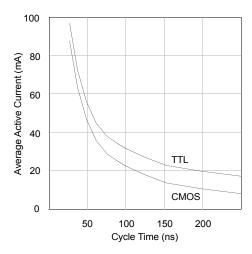


Figure 2: I_{CC} (max) Reads

LOW AVERAGE ACTIVE POWER

The FTN16C8 draws significantly less current when it is cycled at times longer than 55ns. Figure 2 shows the relationship between $I_{\rm CC}$ and READ cycle time. Worst-case current consumption is shown for both CMOS and TTL input levels (commercial temperature range, $V_{\rm CC}$ = 5.5V, 100% duty cycle on chip enable). Figure 3 shows the same relationship for WRITE cycles. If the chip enable duty cycle is less than 100%, only standby current is drawn when the chip is disabled. The overall average current drawn by the FTN16C8 depends on the following items: 1) CMOS vs. TTL input levels; 2) the duty cycle of chip enable; 3) the overall cycle rate for accesses; 4) the ratio of READs to WRITEs; 5) the operating temperature; 6) the $V_{\rm CC}$ level; and 7) I/O loading.

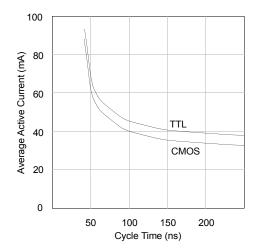
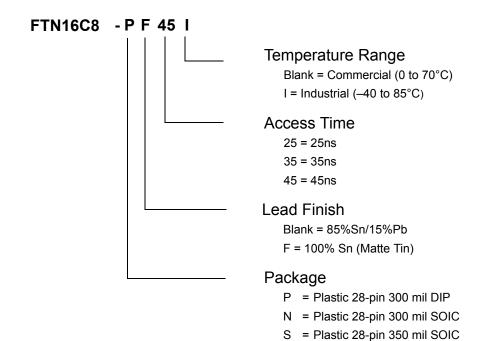



Figure 3: I_{CC} (max) Writes

ORDERING INFORMATION

Ashley Crt, Henley, Marlborough, Wilts, SN8 3RH

Tel: +44(0)1264 731200 Fax:+44(0)1264 731444

E-mail

info@forcetechnologies.co.uk tech@forcetechnologies.co.uk sales@forcetechnologies.co.uk

www.forcetechnologies.co.uk

Life Support Applications

Force Technologies products are not designed for use in life support appliances, devices or systems where malfunction of a Force Technologies product can reasonably be expected to result in a personal injury. Force Technologies customers using or selling Force Technologies products for use in such applications do so at their own risk and agree to fully indemnify Force Technologies resulting from such improper use or sale.

Unless otherwise stated in this SCD, Force Technologies Ltd reserve the right to make changes, without notice, in the products, including circuits, cells and/or software, described or contained herein in order to improve design and/or performance. Force Technologies resumes no responsibility or liability for the use of any of these products, conveys no licence or any title under patent, copyright, or mask work to these products, and makes no representation or warranties that that these products are free from patent, copyright or mask work infringement, unless otherwise specified.

All trademarks acknowledged